Clinical Policy Title: Lymphedema garments

Clinical Policy Number: 14.02.11

Effective Date: September 1, 2017
Initial Review Date: July 20, 2017
Most Recent Review Date: July 3, 2018
Next Review Date: July 2019

Related policies:
CP# 05.01.06 Bioimpedance devices for detecting lymphedema

ABOUT THIS POLICY: Select Health of South Carolina has developed clinical policies to assist with making coverage determinations. Select Health of South Carolina’s clinical policies are based on guidelines from established industry sources, such as the Centers for Medicare & Medicaid Services (CMS), state regulatory agencies, the American Medical Association (AMA), medical specialty professional societies, and peer-reviewed professional literature. These clinical policies along with other sources, such as plan benefits and state and federal laws and regulatory requirements, including any state- or plan-specific definition of "medically necessary," and the specific facts of the particular situation are considered by Select Health of South Carolina when making coverage determinations. In the event of conflict between this clinical policy and plan benefits and/or state or federal laws and/or regulatory requirements, the plan benefits and/or state and federal laws and/or regulatory requirements shall control. Select Health of South Carolina’s clinical policies are for informational purposes only and not intended as medical advice or to direct treatment. Physicians and other health care providers are solely responsible for the treatment decisions for their patients. Select Health of South Carolina’s clinical policies are reflective of evidence-based medicine at the time of review. As medical science evolves, Select Health of South Carolina will update its clinical policies as necessary. Select Health of South Carolina’s clinical policies are not guarantees of payment.

Coverage policy

Select Health of South Carolina considers compression garments for lymphedema to be clinically proven, and therefore medically necessary, under the following conditions:

1. Lymphedema has been diagnosed and documented by the treating physician.
2. The condition impairs activities of daily living, limb use, safe transfers, or mobility.
3. Any swelling from the lymphedema has been minimized.
4. The affected area has been stabilized (ISL, 2009; NSW, 2016).

All care is to be coordinated by a credentialed lymphedema expert. Patients should replace each garment every four to six months (or when the patient’s physical condition changes), and must maintain two of each garment at all times, so one will be always used even when one is being cleaned (NLN, 2017).

Limitations:

- Compression bandaging.
- Compression garments.
- Lymphedema garments.
Compression garments that are not custom made under the supervision of a lymphedema expert are considered investigational/experimental, and not clinically proven.

Alternative covered services:

None.

Background

Lymphedema is a swelling of lymph nodes from an excess of fluid, typically in the arms and legs. Symptoms include tightness and less flexible joints. The disorder represents a manifestation of lymphatic system insufficiency, as lymphatic transport is reduced (ISL, 2009).

Many cases of lymphedema occur after surgery to remove lymph nodes, often when treating various cancers. Among females treated for breast or gynecologic cancer, the risk approaches 40 percent (Johansson, 2015). The condition can also occur from medicines (such as tamoxifen), injury, or can develop spontaneously at birth, in puberty, and in adulthood.

The standard for diagnosing lymphedema has been through lymphangioscintigraphy, an intradermal injection in hands or feet which visualizes the lymphatic network, and provides data on lymph transport using radioactive tracers. Genetic testing is becoming more common, and biopsy can be conducted in certain cases (ISL, 2009).

The initial phase of non-surgical lymphedema treatment begins with physical therapy, typically involving light manual massage, range of motion exercise, and compression applied with multi-layered bandage-wrapping. After physical therapy, use of low stretch elastic garments is essential to maintain lymphedema reduction. Drug therapy and psychosocial rehabilitation are also used. Surgery to alleviate lymphedema is sometimes performed, but is not yet accepted as the standard of practice (ISL, 2009).

A compression garment is a knitted, two-way stretch sleeve or stocking worn to assist in controlling swelling and to aid in moving lymph fluid from the affected area. It should be worn only while the patient is awake and active and should be custom fitted. Compression bandaging is a form of compression used in the treatment of lymphedema. Bandages, which are multiple layers that are adjusted to patient need, are the most effective and flexible form of compression, especially in the early stages of treatment, and provide proper compression when the patient is active or resting. Bandages must be strategically applied with low-to-moderate tension using more layers in the distal portions of the affected limb(s). Interstitial cycling between low-resting and high-working pressures creates an internal pump that encourages movement of congested lymph along the distal to proximal gradient created by bandaging (ONS, 2017).

Garment style and compression strength should be prescribed according to the patient’s ability to manage the garment and maintain the best volume control and skin health (NLN, 2017).
In addition to the day garments used in the latter phases of treatment, some patients with more severe forms of lymphedema will require night garments or advanced day garments to maintain the reductions obtained soon after onset (NLN, 2017).

For pediatric lymphedema patients, which almost always affects the lower extremities, compression garments are the sole treatment in 75 percent of the cases; only a small minority (13 percent) require surgical intervention (Schook, 2011).

For mild lymphedema (stage 0 - 1), a compression sleeve or garment may be recommended, while complete decongestive therapy is recommended for stage 2 - 3 lymphedema to reduce swelling.

Compression bandaging can also be used for lymphedema. However, this treatment can become burdensome and not practical for some patients, due to the dexterity required, unlike the relative ease of simply wearing compression garments (Fu, 2014).

Among the types of garments used to treat lymphedema are 1) thromboembolic device hose that provide continuous pressure; 2) JOBST compression hosiery, a custom made garment to apply pressure to the upper limb, and 3) sequential compression devices, which are special pumps that push air into a sleeve. The general consensus for the order of using these devices is thromboembolic first, then JOBST, and finally sequential compression devices (Bhat, 2016).

The American Cancer Society recommends the use of compression garments in cancer survivors, along with progressive resistance training, under the supervision of a therapist (Rock, 2012), as did the International Union of Phlebology (Lee, 2013). The National Lymphedema Network asserts that compression garments must be replaced every four to six months to be effective. Garments are always part of combined decongestive therapy just after lymphedema appears post-operatively, after maximum volume reduction; they may also be used (NLN, 2017).

A 2016 guideline from Australia recommends compression garments for long-term management of lymphedema that severely limits activities of daily living, limb use, safe transfers, or mobility if 1) the edema is stable; 2) swelling is minimized; 3) any shape or distortion is optimized; and 4) the affected area is stabilized. If ready-to-wear garments fail, custom-made garments can be used (NSW, 2016).

A 2008 guideline from the American College of Chest Physicians includes use of compression stockings for persons traveling long distance (Geerts, 2008). The National Comprehensive Cancer Network guideline recommends use of compression stockings with a venous compression device (Streiff, 2010).

In a clinical guideline, the International Society of Lymphology asserts that no type of lymphedema treatment has undergone a rigorous set of controlled trials or meta-analyses, and thus evolving expert clinical judgment will govern treatment of the disorder (ISL, 2013). Several guidelines from the Society, on lymphedema evaluation and management, were published from 1995 to 2016 (ISL, 2016).
Searches

Select Health of South Carolina searched PubMed and the databases of:

- UK National Health Services Centre for Reviews and Dissemination.
- Agency for Healthcare Research and Quality’s National Guideline Clearinghouse and other evidence-based practice centers.
- The Centers for Medicare & Medicaid Services (CMS).

We conducted searches on May 14, 2018. Search terms were: “compression garments,” “lymphedema garments,” and “lymphedema stockings.”

We included:

- **Systematic reviews**, which pool results from multiple studies to achieve larger sample sizes and greater precision of effect estimation than in smaller primary studies. Systematic reviews use predetermined transparent methods to minimize bias, effectively treating the review as a scientific endeavor, and are thus rated highest in evidence-grading hierarchies.
- **Guidelines based on systematic reviews.**
- **Economic analyses**, such as cost-effectiveness, and benefit or utility studies (but not simple cost studies), reporting both costs and outcomes — sometimes referred to as efficiency studies — which also rank near the top of evidence hierarchies.

Findings

A 2007 review of the literature declared compression garments the “mainstay” of treatment in lymphedema, along with intensive bandaging and lymphatic massage (Warren, 2007). However, in early 2010, a review found that no controlled trials had yet investigated effectiveness of compression sleeves for lymphedema after auxiliary node dissection for breast cancer (Devoogdt, 2010).

Several systematic reviews of persons with lymphedema resulting from cancer surgery addressed efficacy of compression garments. One review of 25 studies (n=1018) showed a reduction in swelling after breast cancer surgery from use of compression garments and bandaging, based on moderate evidence (McNeely, 2011). Another review of 75 articles between 2009 and 2014 supported compression garments, compression bandages, and decongestion therapy with the “highest evidence for best practice” in reducing cancer-related lymphedema, but stated that more controlled trials are needed (Fu, 2014).

A recent article that included nine randomized controlled trials and 19 pre-post random effects studies used in a meta-analysis concluded that compression sleeves do not aid in reducing volume of edema in the acute phase for female breast cancer patients with lymphedema, but are helpful in preventing additional swelling (Rogan, 2016). Another analysis of two controlled trials and five observational
studies found that all treatments in cancer patients with lymphedema, including compression stockings, reduced volume of swelling (Leung, 2015).

A literature review of 51 studies evaluated medical compression stockings. Findings included moderately robust evidence for patients with venous symptoms and prevention/treatment of venous edema; robust evidence for prevention and treatment of venous leg ulcers; and evidence after great saphenous vein interventions limited to one week (Rabe, 2018).

A Cochrane review of 10 studies (n=2361) evaluated effectiveness of elastic compression stockings on post-thrombotic syndrome, a long-term complication of deep vein thrombosis. Low-quality evidence suggests stockings reduce thrombosis risk, with no serious adverse effects (Appelen, 2017).

A meta-analysis of 27 studies addressed the safety and efficacy of microsurgery for lymphedema. A large proportion (91.2 percent) of patients reported subjective improvement after surgery, and 64.8 percent of patients discontinued compression garments at follow-up. Significant reductions were observed in excess and absolute circumference (48.8 percent and average 3.31 centimeters), and excess and absolute volume (56.6 and 23.1 percent) (Basta, 2014).

A systematic review and meta-analysis of 23 studies analyzed effects of compression garments on lower limbs during high-intensity exercise for adults age 18 and older. Users of compression garments showed no significant differences with controls for vertical jump height, maximal oxygen uptake, submaximal oxygen uptake, blood lactate concentrations, and ratings of perceived exertion (da Silva, 2018).

Some randomized controlled trials involving compression garment for lymphedema provide useful information, including:

- Of 803 patients with primary lower extremity lymphedema, those who used compression garments were significantly less likely to have self-reported pain, poor range of motion, and numbness (Deng, 2015).
- Of 95 women with lymphedema six weeks after breast cancer surgery, compression garments reduced excess arm volume by 22.6 percent, compared to 29.0 percent for daily manual lymphatic drainage and bandaging, an insignificant difference; improvements in arm function and quality of life were not significantly different as well (Dayes, 2013).
- Of 170 patients with lower lymphedema, those with compression garments were 2.85 times more likely to be satisfied than those not using them, compared to just 2.26 times for patients with simple lymphatic drainage (Iuchi, 2015).
- Of 86 pediatric patients with lymphedema, compression garments were used in 99 percent of cases, compared to 97 percent for manual lymph drainage and 68 percent for multilayered bandaging (Watt, 2017).
- In a study of 25 patients, there was no difference in arm volume reduction after two weeks for breast cancer patients with lymphedema between those with compression garments and
manual lymph drainage, versus those with compression bandaging and manual lymph drainage (King, 2012).

- All conservative therapies, including compression garments, for arm lymphedema produced relatively small improvements in arm symptoms and quality of life (Moseley, 2007).
- For female breast cancer patients with lymphedema, differences in effects of stem cell therapy could not be discerned from those of compression sleeves (Li, 2016).

Policy updates:

A total of one guideline/other and three peer-reviewed references were added to this policy in May 2018.

Summary of clinical evidence:

<table>
<thead>
<tr>
<th>Citation</th>
<th>Content, Methods, Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deng (2015)</td>
<td>Key points:</td>
</tr>
</tbody>
</table>
| Treatment outcomes of lower extremity primary lymphedema | - Analysis of 803 persons with lower extremity primary lymphedema.
- Those using compression garments had significantly reduced rates of reported pain, poor range of motion, and numbness. |
| Basta (2014) | **Key points:** |
| Safety and efficacy of microsurgery for lymphedema | - Meta-analysis of 27 studies
- Techniques included lymphovenous shunt procedures (22 studies) and lymph node transplantation (5 studies)
- 91.2 percent of patients reported subjective improvement, 64.8 percent discontinued compression garments at follow-up
- Excess and absolute circumference reductions were 48.8% and 3.31 cm average
- Excess and absolute volume reductions were 56.6% and 23.1% |
| Fu (2014) | **Key points:** |
| Cancer related lymphedema treatment effectiveness | - Study of 75 articles from 2009 to 2014 from the Oncology Nursing Society Putting Evidence Into Practice lymphedema team.
- Highest evidence found for use of compression garments, compression bandages, and complete decongestive therapy.
- Future research with high-level evidence and larger samples needed. |
| Dayes (2013) | **Key points:** |
| Decongestive lymphatic therapy for treating of lymphedema | - Review of women, six institutions, with breast cancer-related lymphedema (n=95).
- After six weeks, reduction in excess arm volume in women treated with daily manual lymphatic drainage and bandaging plus compression garments was 29.0%, compared to those only with compression garments (22.6%); difference not significant.
- No difference between groups in proportion losing over 50% of excess arm volume, improvements in quality of life, and improvements in arm function. |
No evidence that adding drainage and bandaging improves outcomes; compression garments alone shown to be efficacious.

McNeely (2011)

Conservative and dietary treatment effectiveness for cancer-related lymphedema

Key points:

- Meta-analysis of 25 studies (n=1018) of persons treated for lymphedema with conservative and dietary measures.
- Swelling reduced after breast cancer surgery from use of compression garments and compression bandaging; evidence is moderate.
- Statistically significant but clinically small benefit of adding manual lymph drainage massage to compression garments.

References

Professional society guidelines/other:

Peer-reviewed references:

CMS National Coverage Determinations (NCDs):

No NCDs identified as of the writing of this policy.

Local Coverage Determinations (LCDs):

No LCDs identified as of the writing of this policy.
Commonly submitted codes

Below are the most commonly submitted codes for the service(s)/item(s) subject to this policy. This is not an exhaustive list of codes. Providers are expected to consult the appropriate coding manuals and bill accordingly.

<table>
<thead>
<tr>
<th>CPT Code</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICD-10 Code</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>I89.0 - I89.9</td>
<td>Other noninfective disorders of lymphatic vessels and lymph nodes [intractable lymphedema]</td>
<td></td>
</tr>
<tr>
<td>R60.0 - R60.9</td>
<td>Edema, not elsewhere classified</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCPCS Level II Code</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4465</td>
<td>Nonelastic binder for extremity</td>
<td></td>
</tr>
<tr>
<td>A6530 - A6549</td>
<td>Gradient compression stocking</td>
<td></td>
</tr>
<tr>
<td>E0650</td>
<td>Pneumatic compressor, non-segmental home model</td>
<td></td>
</tr>
<tr>
<td>E0651</td>
<td>Pneumatic compressor, segmental home model without calibrated gradient pressure</td>
<td></td>
</tr>
<tr>
<td>E0652</td>
<td>Pneumatic compressor, segmental home model with calibrated gradient pressure</td>
<td></td>
</tr>
<tr>
<td>E0660</td>
<td>Non-segmental pneumatic appliance for use with pneumatic compressor, full leg</td>
<td></td>
</tr>
<tr>
<td>E0666</td>
<td>Non-segmental pneumatic appliance for use with pneumatic compressor, half leg</td>
<td></td>
</tr>
<tr>
<td>E0667</td>
<td>Segmental pneumatic appliance for use with pneumatic compressor, full leg</td>
<td></td>
</tr>
<tr>
<td>E0669</td>
<td>Segmental pneumatic appliance for use with pneumatic compressor, half leg</td>
<td></td>
</tr>
<tr>
<td>E0671</td>
<td>Segmental gradient pressure pneumatic appliance, full leg</td>
<td></td>
</tr>
<tr>
<td>E0673</td>
<td>Segmental gradient pressure pneumatic appliance, half leg</td>
<td></td>
</tr>
<tr>
<td>S8420-S8428</td>
<td>Gradient Pressure Aids (sleeves, gloves, gauntlets)</td>
<td></td>
</tr>
</tbody>
</table>